Cosmic Flows

as a Probe of the

Large Scale Structure

of the

Coffee Break

Universe

• The Expanding Universe

Hume A. Feldman

Peculiar Velocities

University of Kansas

The Cosmic Distance Ladder

Bulk Flows

2004 Santa Fe

Pairwise velocities

Cosmology Summer Workshop

Optimal moments

July 16, 2004

Concluding remarks

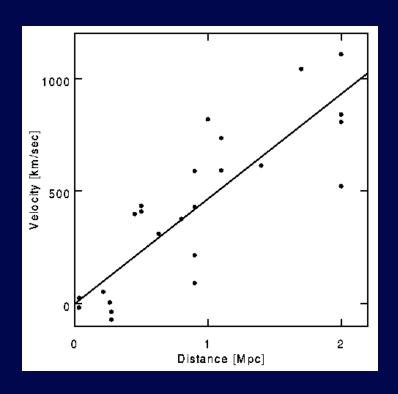
The Expanding Universe

1922 – Friedmann Showed that Einstein's Equations have an expanding solution.

1929 – Hubble observed that

Distance ∝ Redshift

In a HOMOGENEOUS Universe: $H_0 r = cz = c \delta \lambda / \lambda$



 $H_0 = 500 \text{ km} / \text{s} / \text{Mpc}$

Hubble Original data

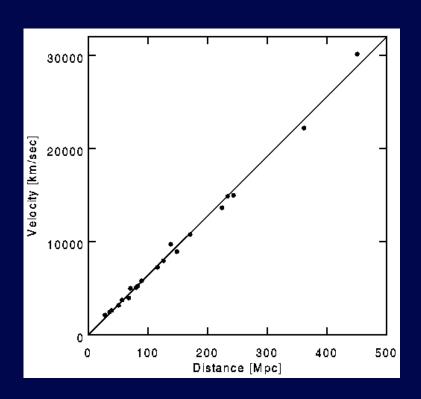
The Expanding Universe

1922 – Friedmann Showed that Einstein's Equations have an expanding solution.

1929 – Hubble observed that

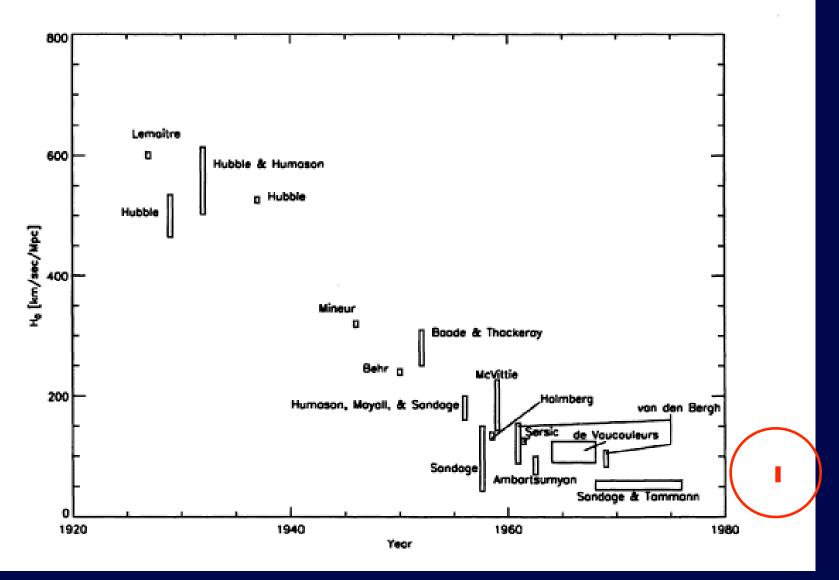
Distance ∝ Redshift

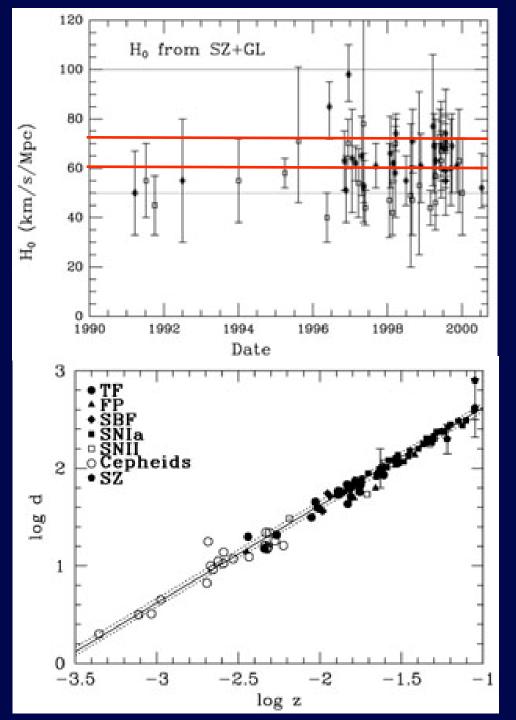
In a HOMOGENEOUS Universe: $H_0 r = cz = c \delta \lambda / \lambda$



$$H_0 = 65 \pm 15 \text{ km} / \text{s} / \text{Mpc}$$

TRIMBLE



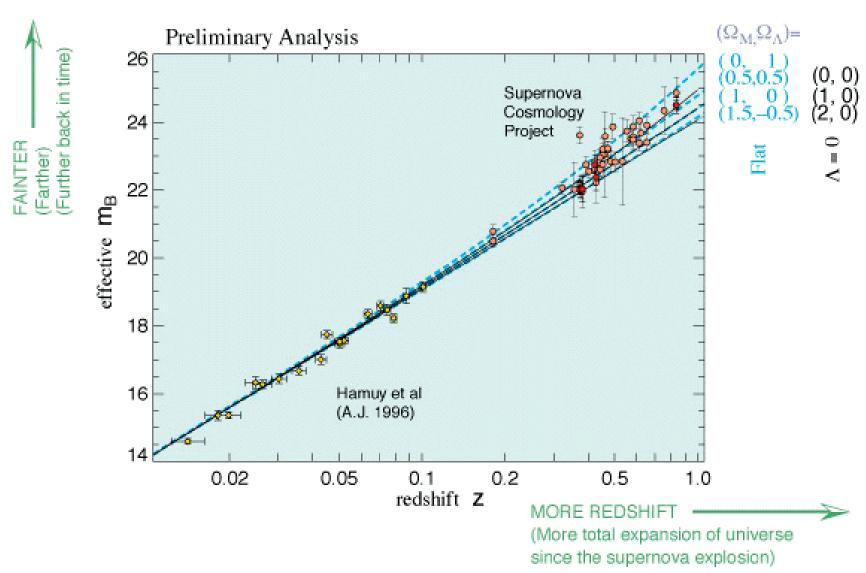


The Hubble Constant

The solid line is for H0 = 72 km/s/Mpc with the dashed lines representing $\pm 10\%$

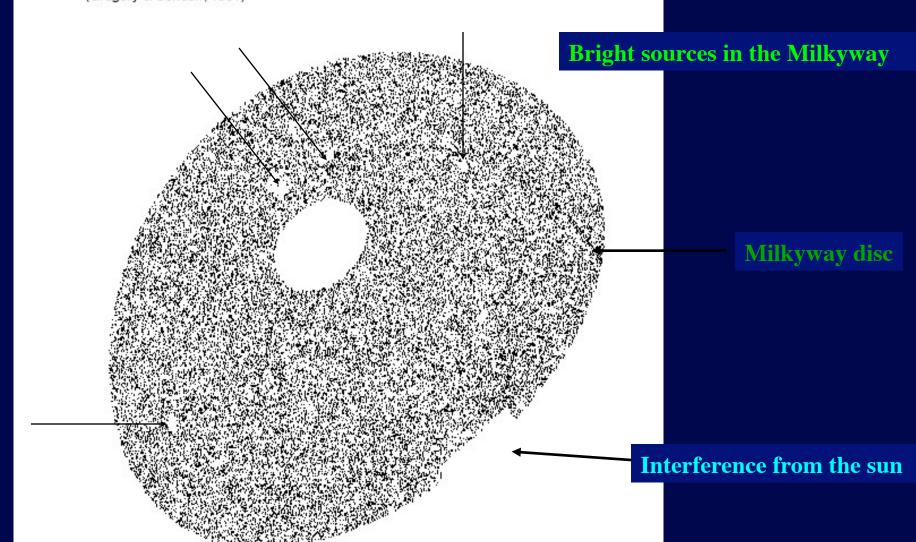
Freedman etal, 2003

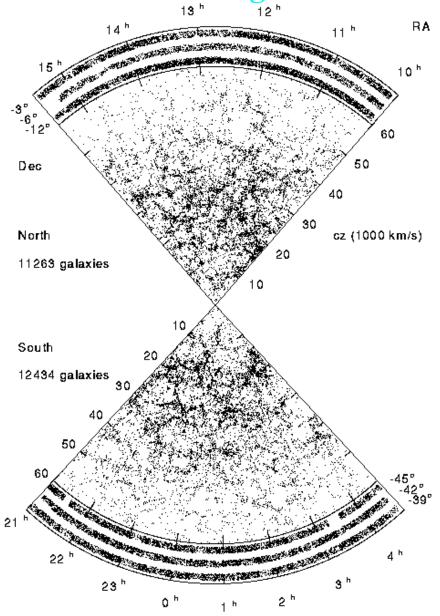
Hubble Plots



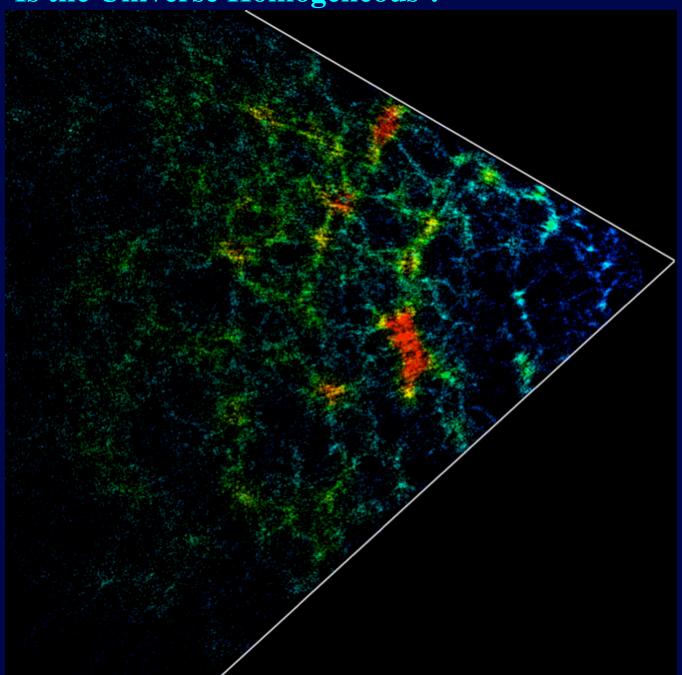
Is the Universe Homogeneous? Angular Distribution of the ~34,000 brightest 6cm radio sources

(Gregory & Condon, 1991)

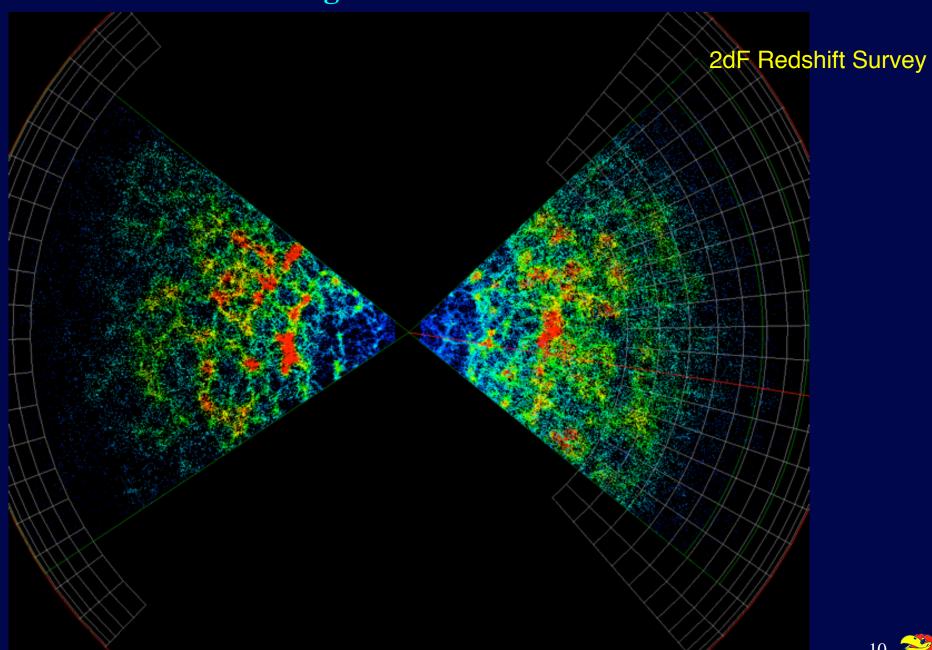


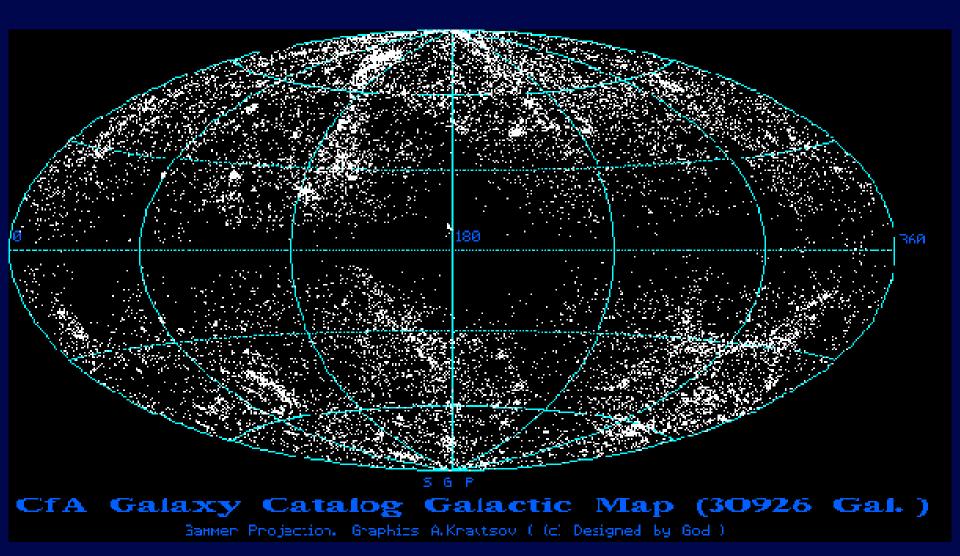


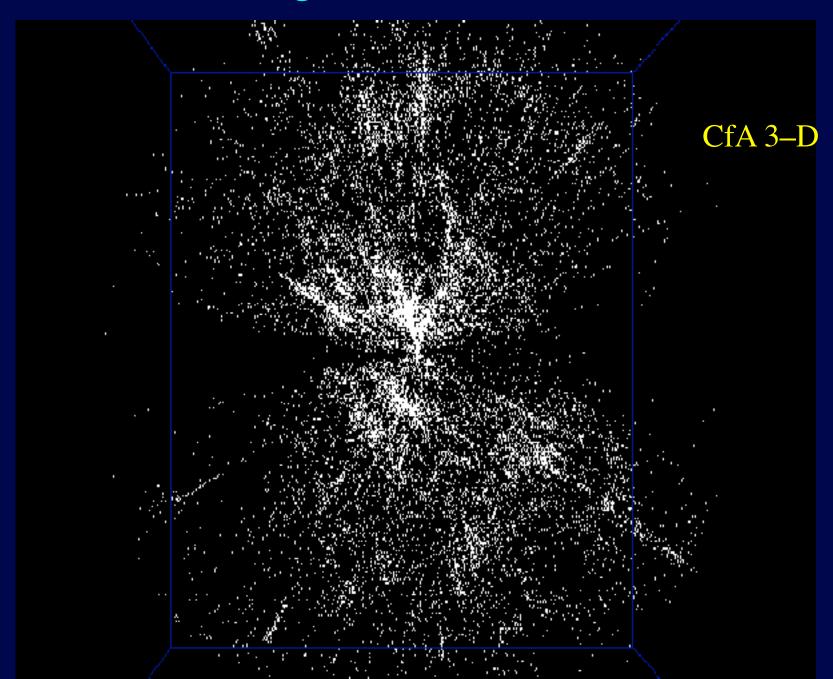
LCRS, Sheckman etal, 1996



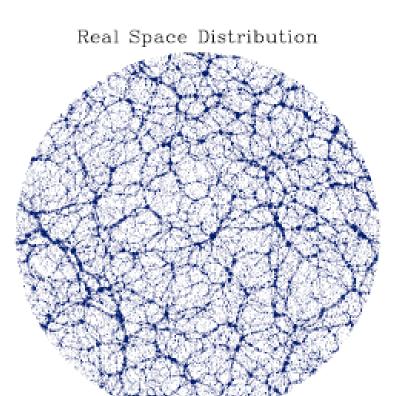
2dF Redshift Survey

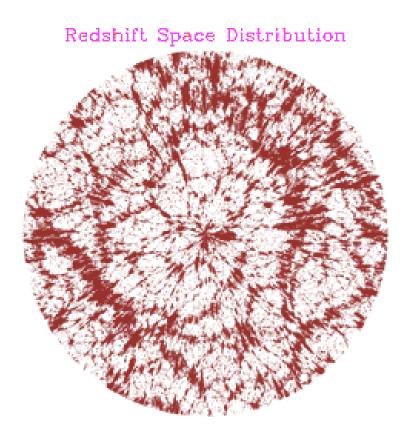




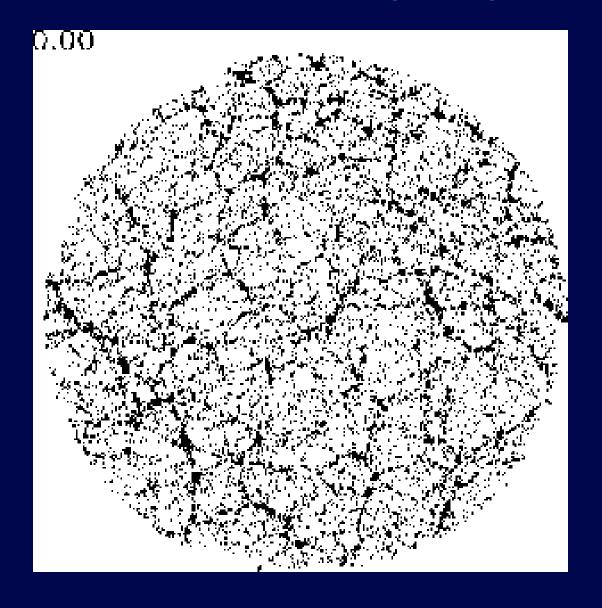


Redshift Distortions





Redshift Distortions



Peculiar Velocity Field

Measure the line of sight peculiar velocities:

$$v_p = cz - H_0r$$

The difference between the redshift and the distance

Why should we study v_p?

★ The peculiar velocity field is dominated by large scales

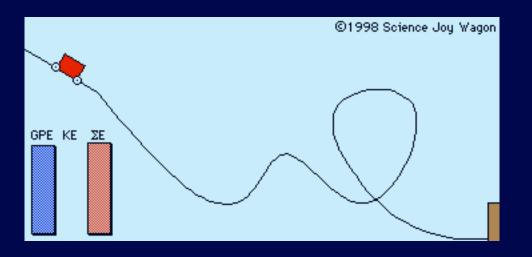
Linear structure

* Test of gravitational instability model
$$\vec{\nabla} \cdot \vec{V} = \frac{\delta \rho}{\rho}$$
 $\vec{\nabla} \times \vec{V} = 0$

***** A direct probe of the mass distribution $ec{V} = ec{
abla} \phi$

$$\vec{V} = \vec{\nabla}\phi$$

Comparison of velocity fields & Luminous matter distribution \rightarrow bias, Ω ...



***** A direct probe of the mass distribution

$$\vec{V} = \vec{\nabla}\phi$$

How to measure cosmological distances?

aka The Cosmic Distance Ladder

A stepwise procedure: Errors proliferating

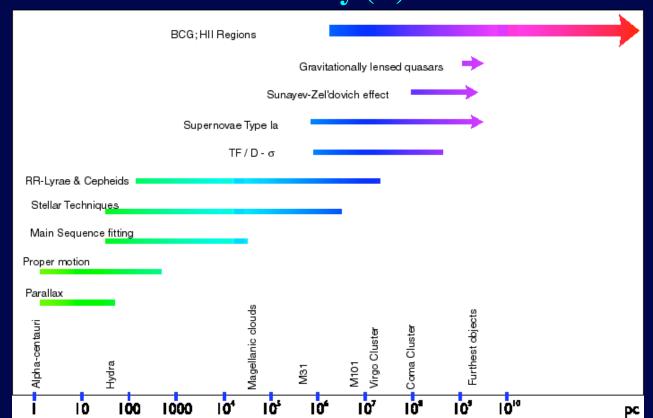
The idea:

Measure the apparent luminosity (l)

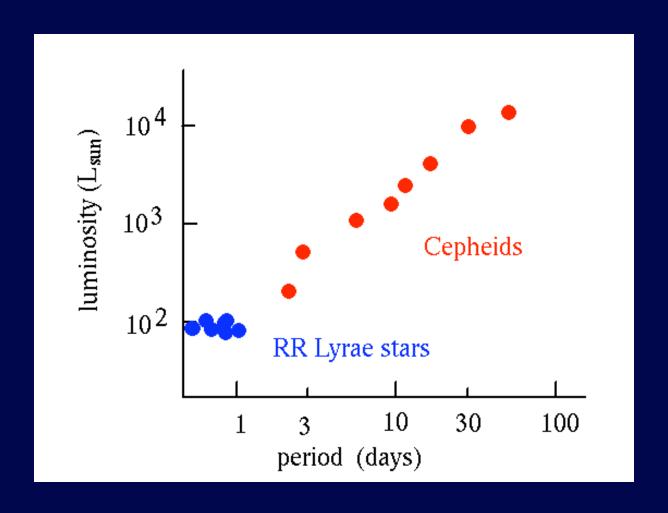
Get the distance

Find out absolute luminosity (L)

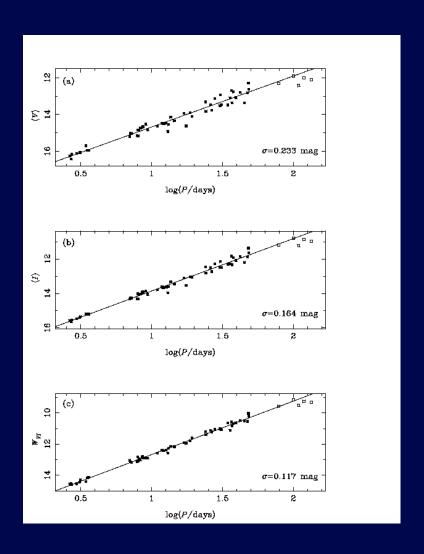
 $\ell = L / 4\pi r^2$



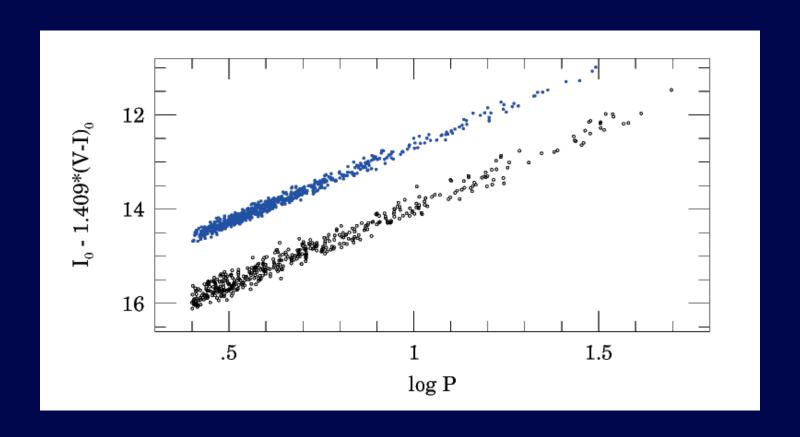
• Find correlated observables:



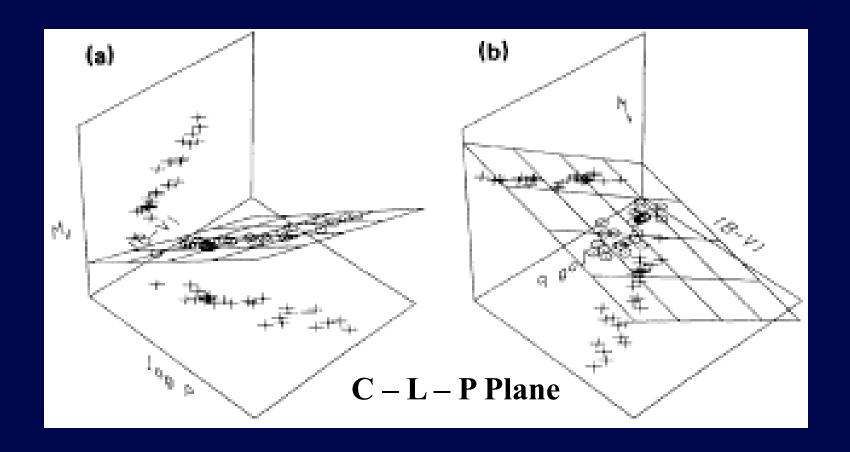
• Find correlated observables:



• Find correlated observables:



• Find correlated observables:



Find correlated observables:

Period – Luminosity variable stars (Cepheids, RR-Lyr, ...)

- Use variable stars to find distances to distant galaxies
- Find other correlated observables:
 - Tully Fisher

Spiral galaxies

 $L \propto v_r^4$

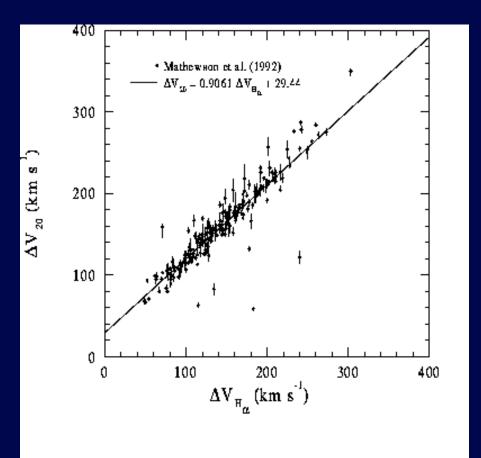
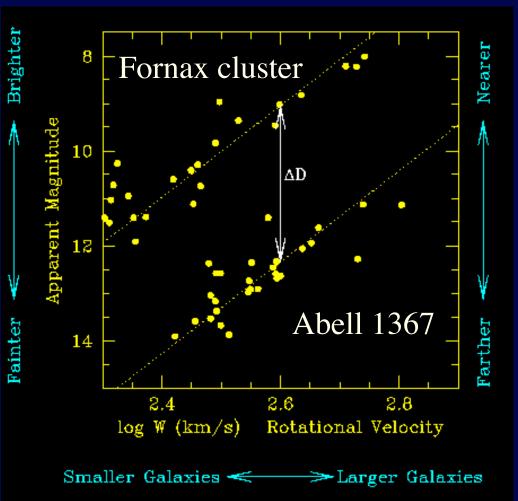
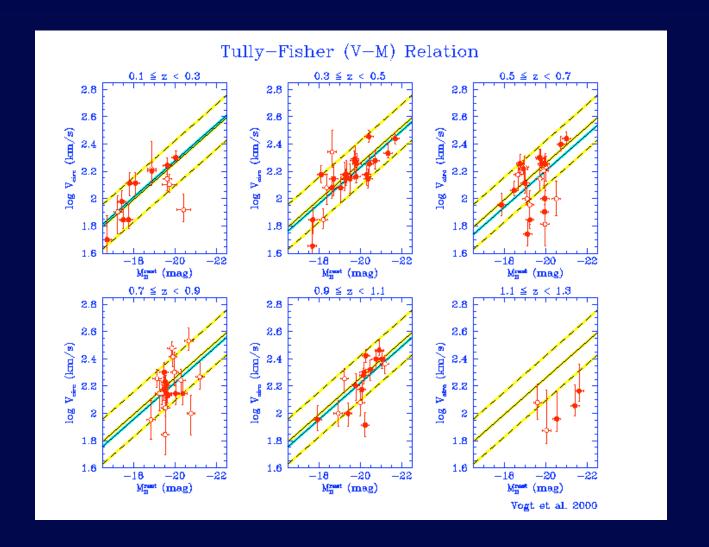
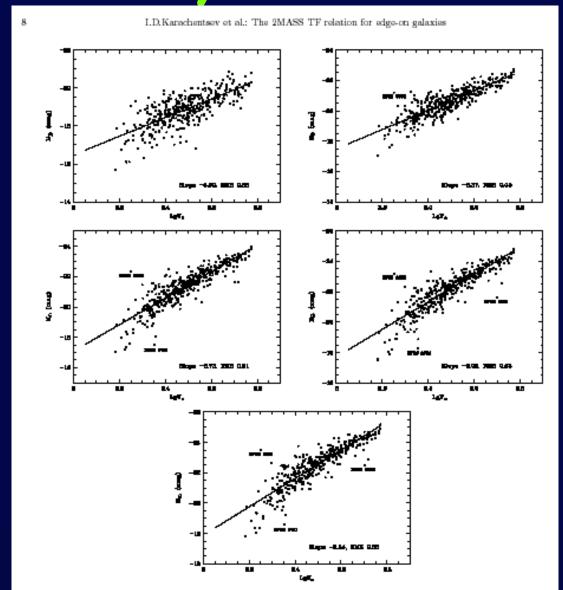


Figure 8.1: HI half-linewidth versus H_{α} rotation velocity for a sample of 204 nearby galaxies. Data taken from Mathewson *et al.* (1992)



 $\Delta D = relative$ difference between the distances of the two clusters





Find correlated observables:

Period – Luminosity variable stars (Cepheids, RR-Lyr, ...)

- Use variable stars to find distances to distant galaxies
- Find other correlated observables:

Spiral galaxies

$$L \propto v_r^4$$

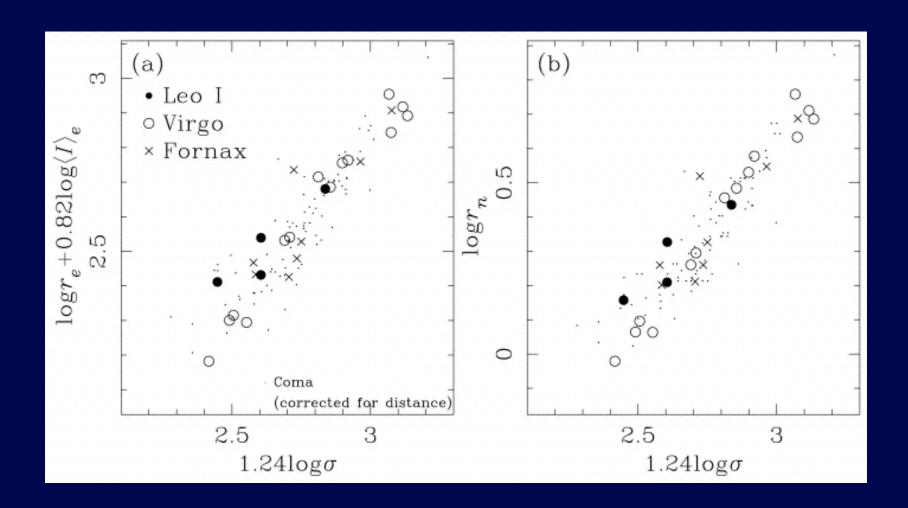
•
$$\mathbf{D_n} - \boldsymbol{\sigma}$$

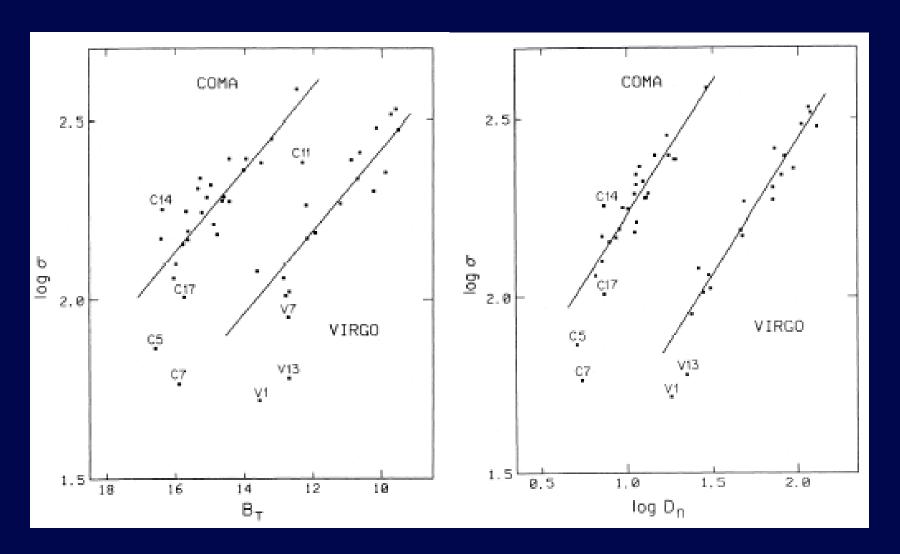
Elliptical galaxies $L(a)B_i \propto \sigma_v^4$

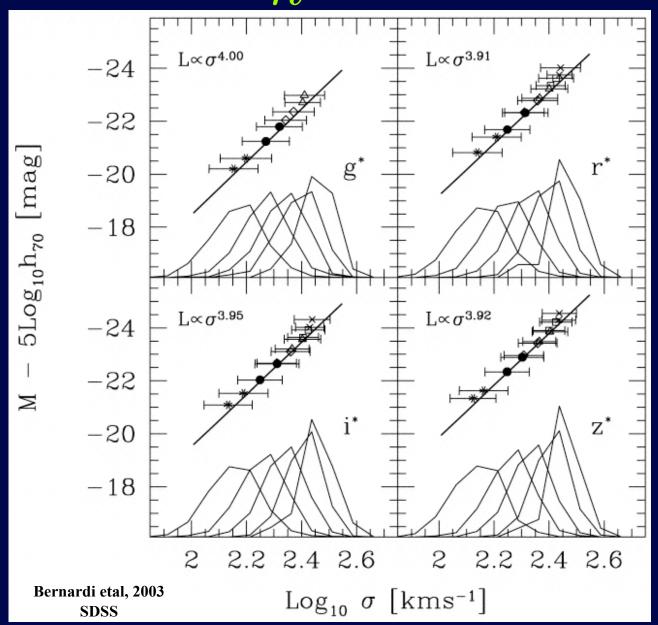
$$L@B_i \propto \sigma_v^4$$

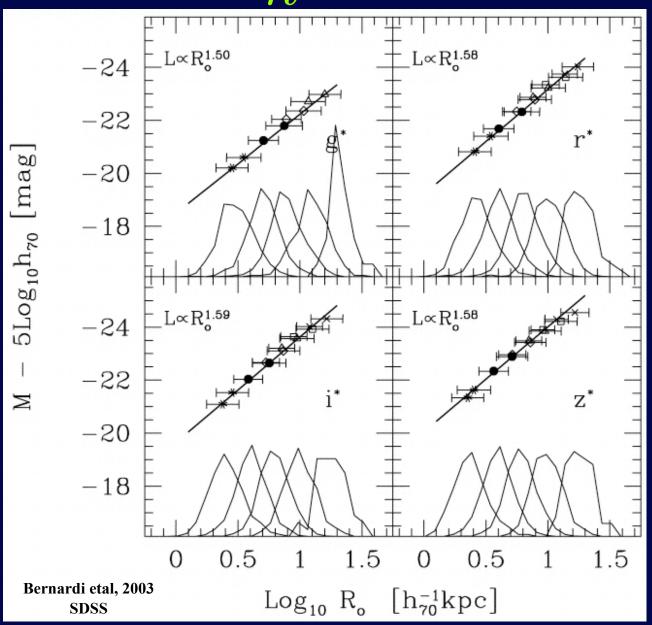
$$D_n \propto r_c < I >_c^{0.8}$$

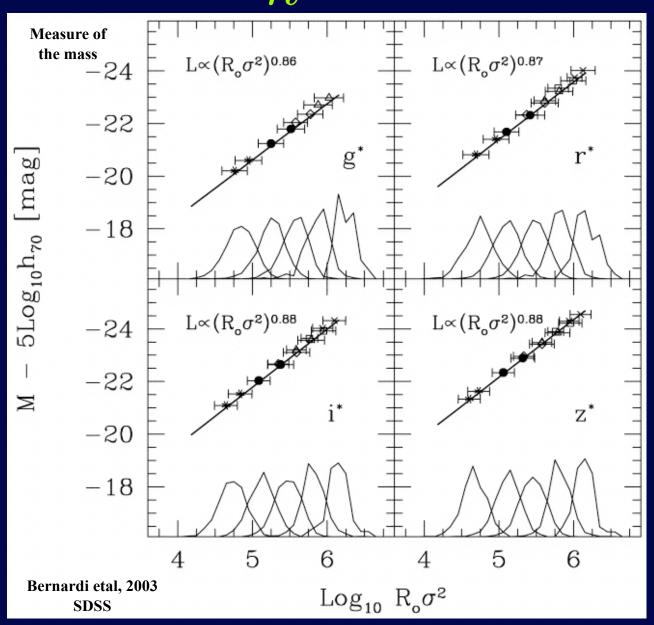
$$\log D_n = 1.333 \log \sigma + \text{constant}$$











Find correlated observables:

Period – Luminosity variable stars (Cepheids, RR-Lyr, ...)

- Use variable stars to find distances to distant galaxies
- Find other correlated observables:
 - Tully Fisher

Spiral galaxies

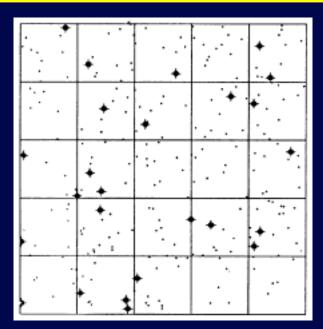
 $L \propto v_r^4$

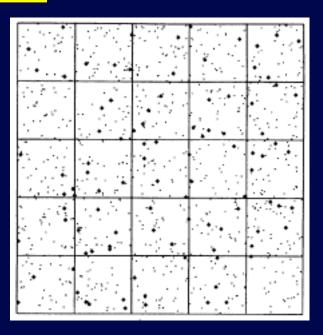
•
$$\mathbf{D_n} - \boldsymbol{\sigma}$$

Elliptical galaxies $L(a)B_i \propto \sigma_v^4$

Surface Brightness Fluctuations

Surface
Brightness
Fluctuations
(SBF)





Measure: flux per pixel f_{av} rms fluctuations in flux between pixels

Mean: $f_{av} \sim N f_{av}^* \sim d^2 d^{-2} \sim constant$

Variance: $\sigma^2 \sim N (f^*_{av})^2 \sim d^{-2}$

rms: $\sigma \sim d^{-1}$

Find correlated observables:

Period – Luminosity variable stars (Cepheids, RR-Lyr, ...)

- Use variable stars to find distances to distant galaxies
- Find other correlated observables:
 - Tully Fisher

Spiral galaxies

 $L \propto v_r^4$

• $\mathbf{D_n} - \mathbf{\sigma}$

Elliptical galaxies

 $L@B_i \propto \sigma_v^4$

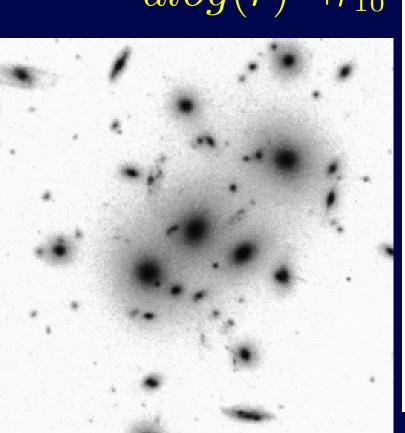
- Surface Brightness Fluctuations
- Brightest Cluster Galaxy

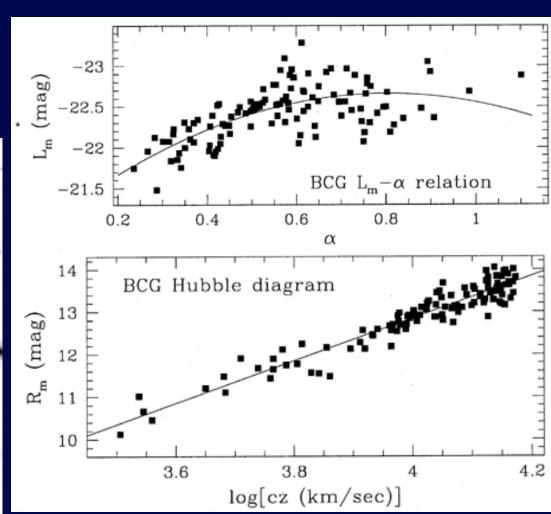
Metric luminosities

• Brightest Cluster Galaxy

Metric luminosities

$$\alpha \equiv \frac{dlog(L_m)}{dlog(r)}\Big|_{r_{10}}$$





The Cosmic Ladder

Find correlated observables:

Period – Luminosity variable stars (Cepheids, RR-Lyr, ...)

- Use variable stars to find distances to distant galaxies
- Find other correlated observables:
 - Tully Fisher

Spiral galaxies

 $L \propto v_r^4$

• $\mathbf{D_n} - \mathbf{\sigma}$

Elliptical galaxies

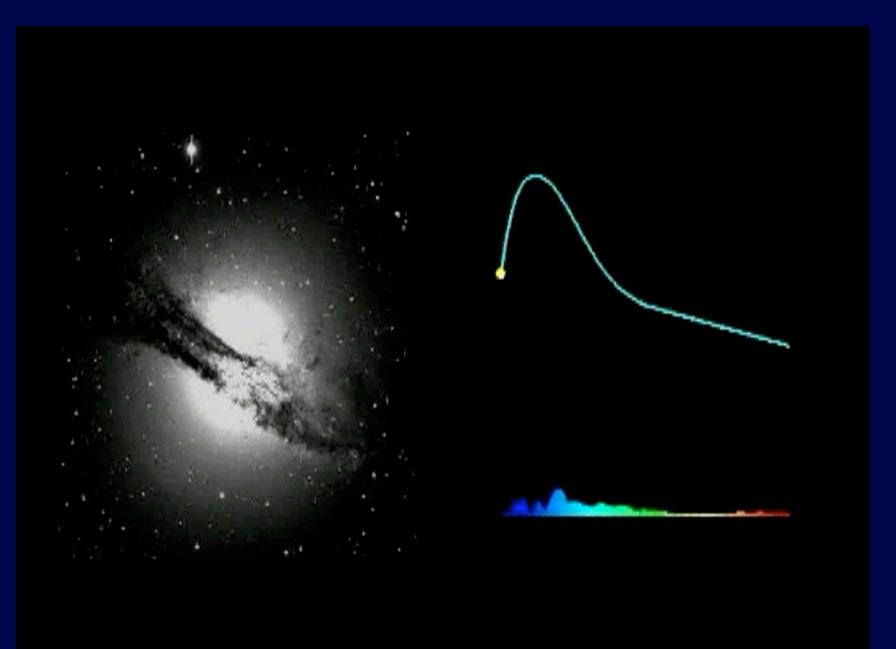
 $L(a)B_i \propto \sigma_v^4$

- Surface Brightness Fluctuations
- Brightest Cluster Galaxy

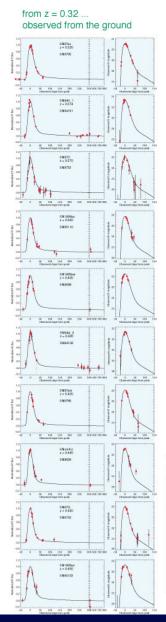
Metric luminosities

Supernaovae Type Ia

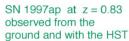
Light Curve Shapes

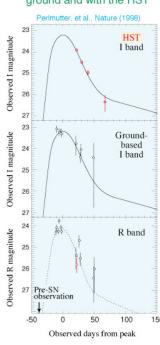


Type la Supernovae

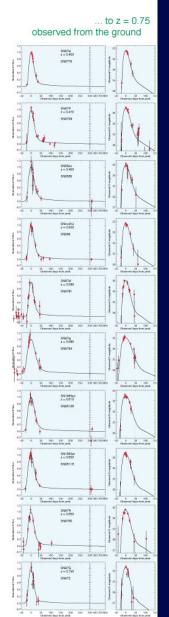


Light Curves





We observe most of the supernovae for approximately two months in both the R and I bands (corresponding approximately to the restframe B and V bands for the median redshift). At high redshifts, a significant fraction of this host galaxy light is within the seeing disk of the supernova, so final observations about one year later are usually necessary to observe (and subtract) the host galaxy light after the supernova has faded. The plots to the left and the right show just the R band light curves for about half of the 40 supernovae that have been completely observed and analyzed so far. The plots above show the highest redshift spectroscopically confirmed supernova, which was observed with the Hubble Space Telescope.

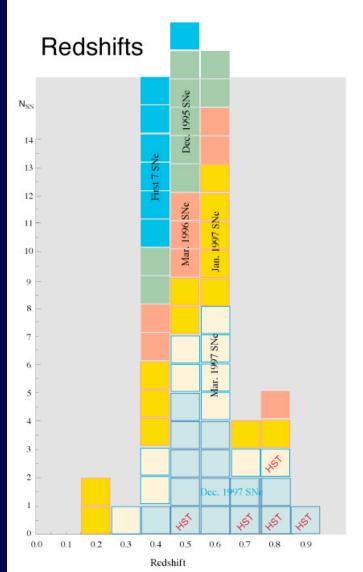


http://www-supernova.lbl.gov/

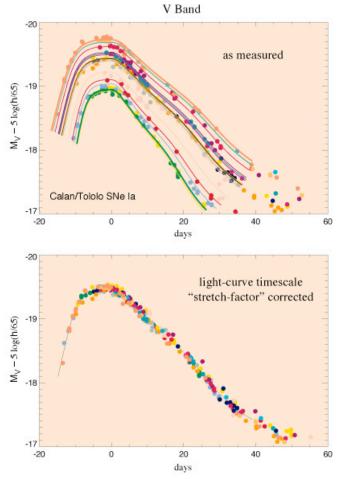
C. Pennypacker

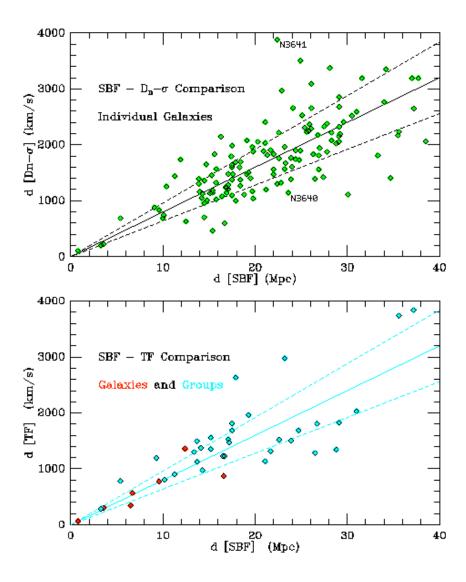
M. DellaValle Univ. of Padova R. Ellis, R. McMahon loA, Cambridge

B. Schaefer Yale University P. Ruiz-Lapuente Univ. of Barcelona H. Newberg Fermilab



Low Redshift Type Ia Template Lightcurves





The Cosmic Ladder

• Find correlated observables:

Period – Luminosity variable stars (Cepheids, RR-Lyr, ...)

- Use variable stars to find distances to distant galaxies
- Find other correlated observables:
 - Tully Fisher

Spiral galaxies

 $L \propto v_r^4$

• $\mathbf{D_n} - \mathbf{\sigma}$

Elliptical galaxies $L(a)B_i \propto \sigma_v^4$

• Surface Brightness Fluctuations

 $\alpha = dlog(L_m)/dlog(r) | r_{10}$

• Brightest Cluster Galaxy (BCG)

Metric luminosities

Supernaovae Type Ia (SNIa)

Light Curve Shapes

• Sunayev–Zeldovich Effect (SZE)

Cluster distances

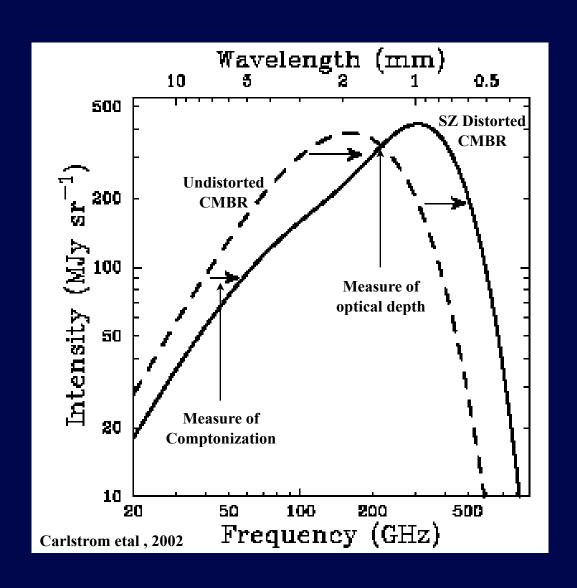
CMB photons Compton scatter on hot electrons in clusters.

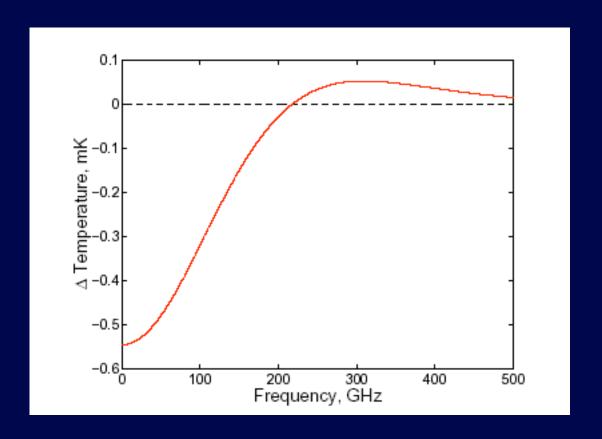
Thermal SZE:

The high T (keV) e^- increase $E_Y => non-thermal$ spectrum

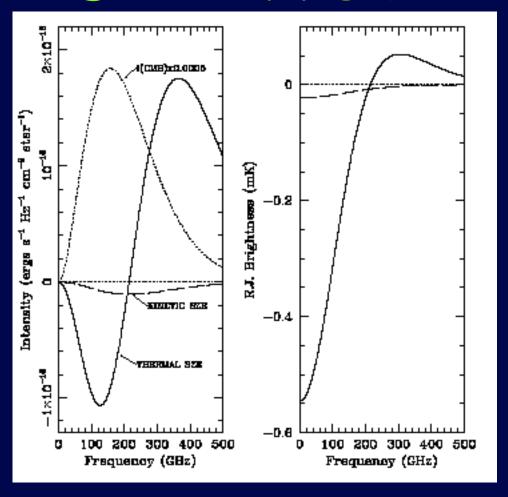
Kinetic SZE:

The bulk motion of the cluster red- or blue-shifts scattered γ

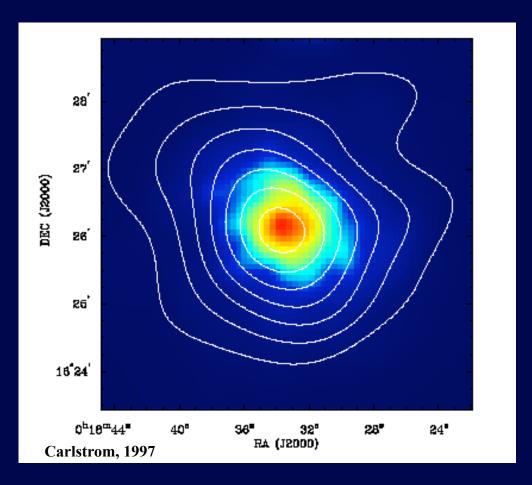




SZE Spectral Distortion of the CMBR due to hot ionized gas associated with a cluster of galaxies



$$T_{e^{-}} = 10kev$$
 $y = 10^{-4}$ $v_{pec} = 500km/s$



SZE (contours) and X-ray emission (colors) due to hot gas in cluster 0016+16 (z=0.5455) with $L_{cl}\approx 10^{12}L_{\odot}$.

The cluster appears as a hole in the CMBR

To study the velocity field we first look at Bulk Flows At great distances we cannot measure the distances accurately

e.g.

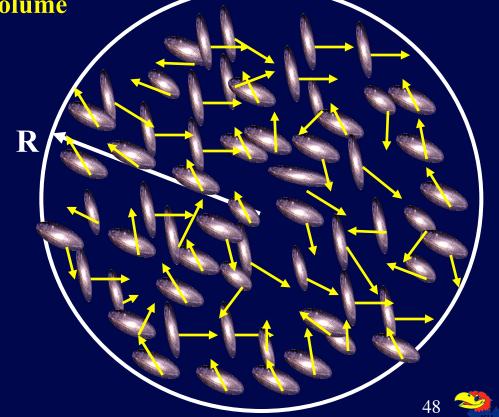
At 10,000 km/s (100 h⁻¹ Mpc) uncertainty of
$$10\% \rightarrow 1,000$$
 km/s

We want to measure peculiar velocities of

 $\leq 500 \text{ km} / \text{s}$

Combine data to find net motion of a volume

Beat down the error by \sqrt{N}



As R becomes large, expect $v_p \rightarrow 0$

Test homogeneity

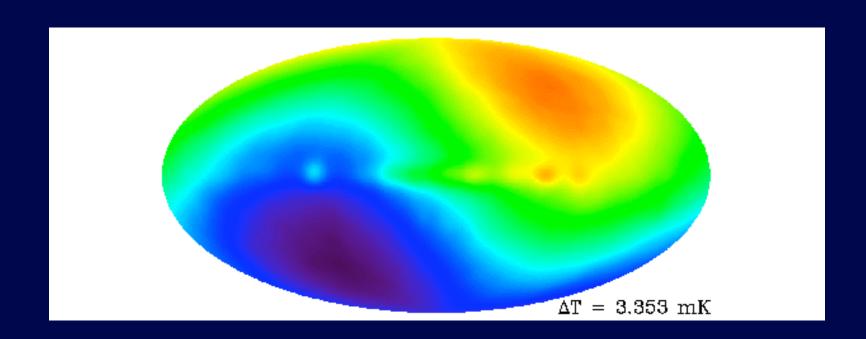
1975 – Rubin & Ford: Sc Galaxies ($H_0r \le 10,000 \text{ km/s}$)

 $V_{LG} \sim 550 \text{ km/s}$

1975 – Rubin & Ford: Sc Galaxies (H_0 r ≤ 10,000 km/s)

 $V_{LG} \sim 550 \text{ km/s}$

1976 – CMB Dipole: $V_{LG} \sim 620 \text{ km/s}$



1975 – Rubin & Ford: Sc Galaxies (H_0 r $\leq 10,000$ km/s)

 $V_{LG} \sim 550 \text{ km/s}$

1976 – CMB Dipole: $V_{LG} \sim 620 \text{ km/s}$

1987 – 7 Samurai: $D_n - \sigma (H_0 r \le 6,000 \text{ km/s})$

 $V_{7SIF} \sim 550 \text{ km/s}$ (Great attractor!)

1975 – Rubin & Ford: Sc Galaxies (H_0 r $\leq 10,000$ km/s)

 $V_{LG} \sim 550 \text{ km/s}$

1976 – CMB Dipole: $V_{L,G} \sim 620 \text{ km/s}$

1987 – 7 Samurai: $D_n - \sigma (H_0 r \le 6,000 \text{ km/s})$

 $V_{7SIF} \sim 550 \text{ km/s}$ (Great attractor!)

1993 – Lauer & Postman BCG (H_0 r \leq 15,000 km/s)

 $\overline{V_{ACIF}} \sim 700 \text{ km/s}$ (Enormous attractor?)

1975 – Rubin & Ford: Sc Galaxies ($H_0r \le 10,000 \text{ km/s}$)

 $V_{LG} \sim 550 \text{ km/s}$

 $V_{LG} \sim 620 \text{ km/s}$

 $\overline{D_n} - \sigma (\overline{H_0}r \le 6,000 \text{ km/s})$ 1987 – 7 Samurai:

 $V_{7SIF} \sim 550 \text{ km/s}$ (Great attractor!)

1993 – Lauer & Postman $BCG (H_0r \le 15,000 \text{ km/s})$

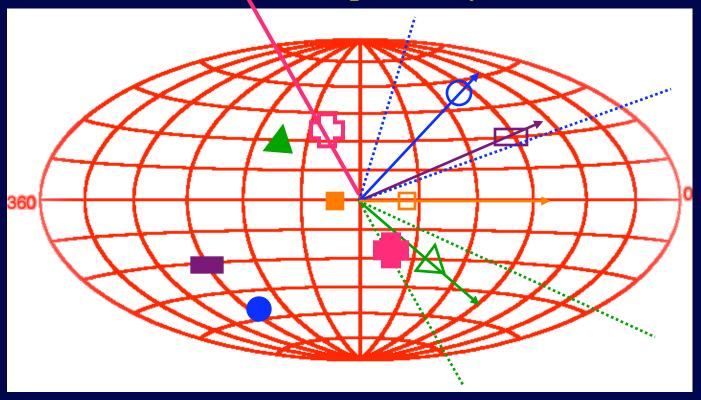
 $V_{ACIF} \sim 700 \text{ km/s}$ (Enormous attractor?)

 $\overline{\text{SN Ia}} (H_0 r \le 10,000 \text{ km/s})$

 $V_{\text{SNIF}} \sim 400 \text{ km/s}$ (No attractor?)

- **1976 CMB Dipole:**

Local Group Velocity



Survey	l l	b	$\mathbf{v_p}$	
V _{CMR}	271 ⁰	+290	620 km / s	
v_{LP}	220°	-28 °	$561 \pm 284 \text{ km/s}$	
V _{RPK}	260°	+540	$600 \pm 350 \text{ km / s}$	
V _{SMAC}	195°	0_{0}	$700 \pm 250 \text{ km / s}$	
v_{LP10k}	173 ⁰	+630	$1000 \pm 500 \text{ km / s}$	
V _{SC}	180°	0_{0}	$100 \pm 150 \text{ km/s}$	

Recent Large-Scale Bulk Flow Results

Survey	Method	N	Depth	٧	Random		Q
			km/s	km/s	err (km/s)		
LP	BCG	119	8400	830	220	330	39
SC	TF	63	7000	80	100	290	20
Willick	TF	15	11000	1100	450	270	27
SMAC	FP	56	6000	650	180	260	-4
EFAR	FP	49	9300	650	350	50	10
SNIa	SNIa	65	10000	530	200	313	9

New: Tonry (2003) 6000 km/s < Hd < 30000 km/s

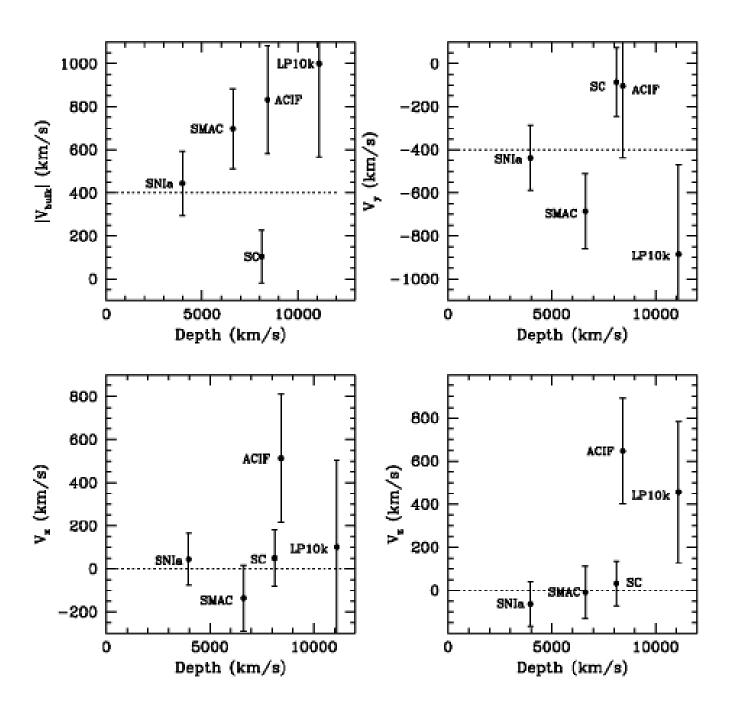
Errors Including Sampling

.. following analysis of Kaiser, Watkins & Feldman

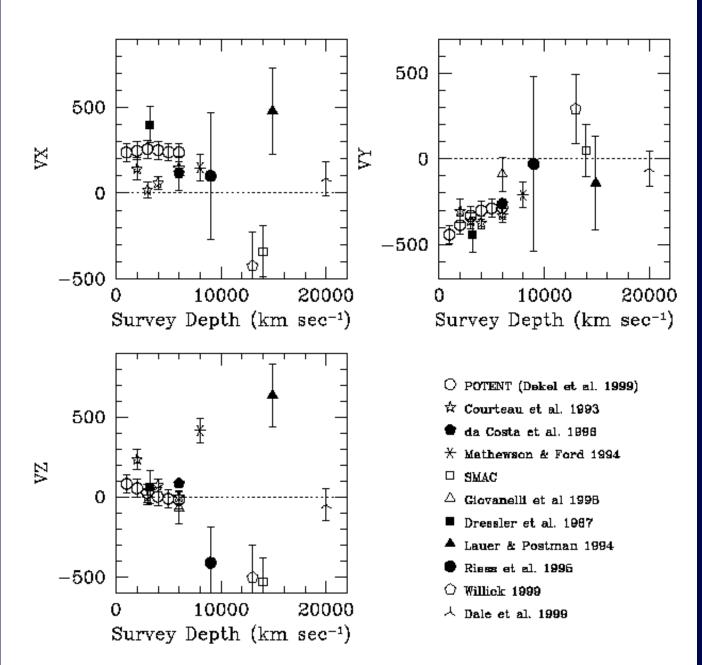
Survey	Method	٧	Random	Sampling	- 1	b
		km/s	err (km/s)	err (km/s)		
LP	BCG	830	220	110	330	39
SC	TF	80	100	170	290	20
Willick	TF	1100	450	220	270	27
SMAC	FP	650	180	180	260	-4
EFAR	FP	650	350	210	50	10
SNIa	SNIa	530	200	130	313	9

Errors are often as large as or larger than random errors

Hudson, 2003

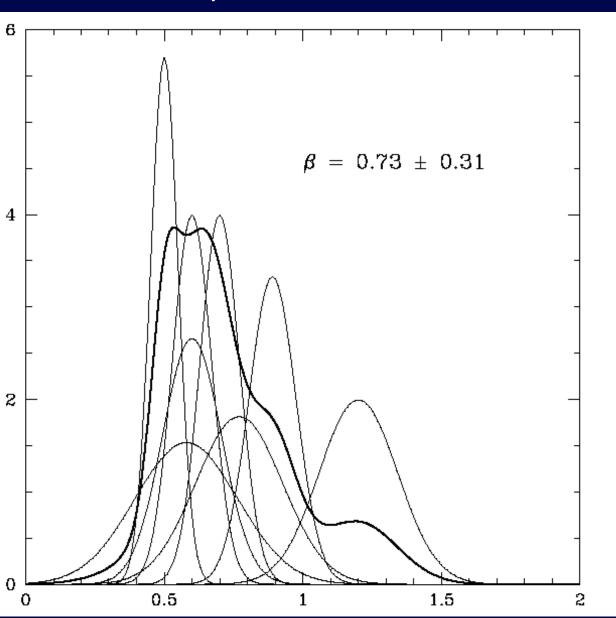


Bulk Flow Measurements



Strauss, 2000

$\beta = \Omega^{0.6} / b$



Systematic effects

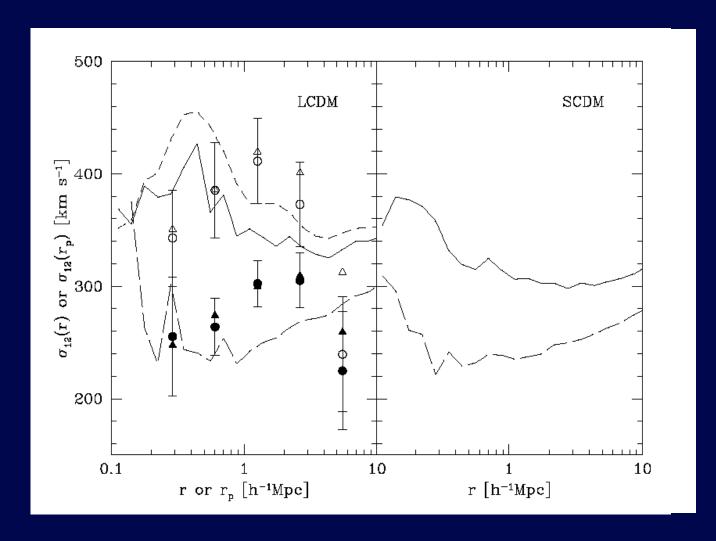
Nonlinear effects

Correlated Errors

Non-trivial biasing

Malmquist biases standard candles calibration...

Pairwise velocity Dispersion σ_{12}



??? What is going on ???

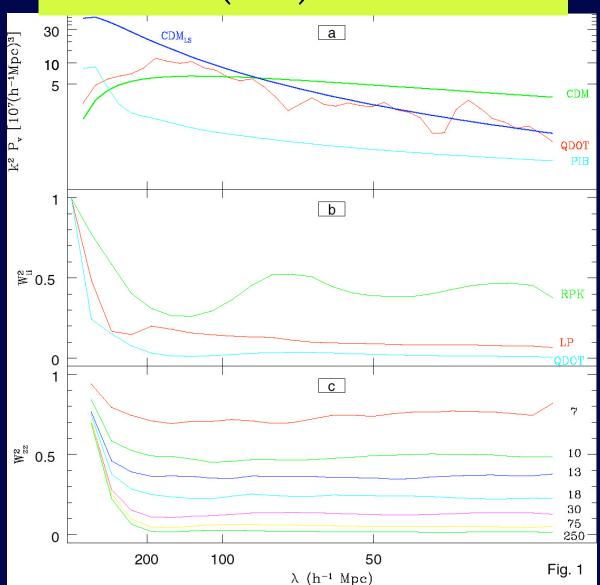
In large scale observations we look for **Estimators**

We try to estimate an underlying quantity

Estimator = True quantity & Window function

e.g.
$$\tilde{p} = N \int \frac{d^3k}{(2\pi)^3} p(\vec{k}) W(\vec{k})$$

$\tilde{p} = N \int \frac{d^3k}{(2\pi)^3} p(\vec{k}) W(\vec{k})$



Coffee Break

Are there any statistics that are consistent across surveys

Mean Pairwise Velocity (v₁₂)

"The tendency of galaxies to approach each other"

Close galaxies (e.g. within a cluster, $r_{12} < 3$ Mpc):

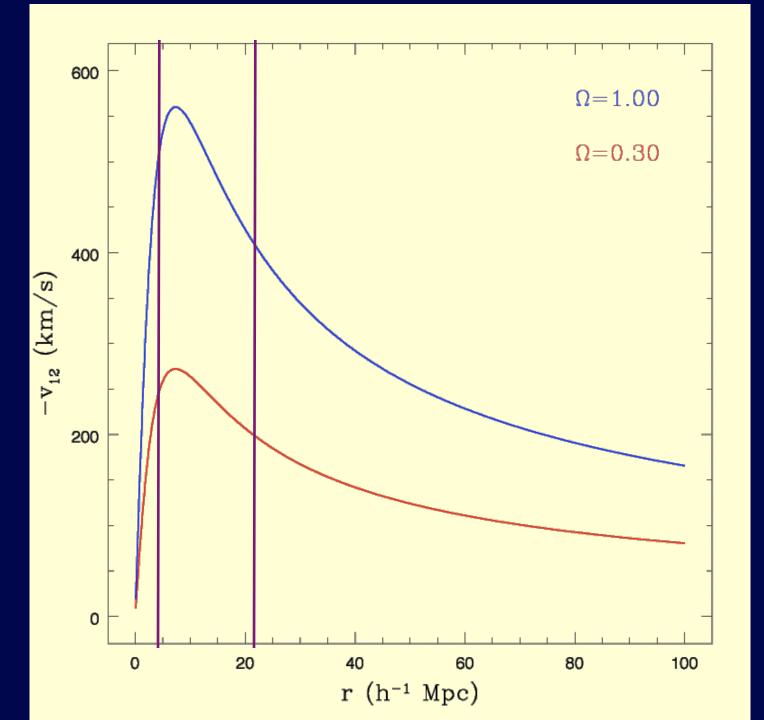
Motion about the local center of mass, $v_{12} = 0$

Far Galaxies $(r_{12} > 30 \text{ Mpc})$

No attraction \Rightarrow no correlations, $v_{12} \rightarrow 0$

For galaxies in intermediate scales

HAF etal 2003 ApJL. 596 131L Juszkiewicz etal 2000 Science, 287 Ferreira etal 1999, ApJL 515 L1



Can we exploit the mean tendency of well-separated galaxies to approach each other to measure cosmological parameters?

Consider the dynamical evolution of a collection of particles interacting through gravity.

In the fluid limit the pair-density weighted relative velocity is:

$$\vec{v}_{12}(r) = <\vec{v}_1 - \vec{v}_2>_{\rho} = \frac{<(\vec{v}_1 - \vec{v}_2)(1 + \delta_1)(1 + \delta_2)>}{1 + \xi(r)}$$

v_i and δ_i = $\rho_i/<\rho>$ - 1 are the peculiar velocities and the density contrast at a point r_i : $r=|\vec{r}_1-\vec{r}_2|$

and
$$\xi(r) = <\delta_1 \delta_2 >$$

Different than the simple weighted average by $\rho_1 \rho_2 / \langle \rho_1 \rho_2 \rangle$

6

The magnitude $v_{12}(r)$ is related to the two-point correlation function $\xi(r)$ through the pair conservation equation in gravitational instability theory.

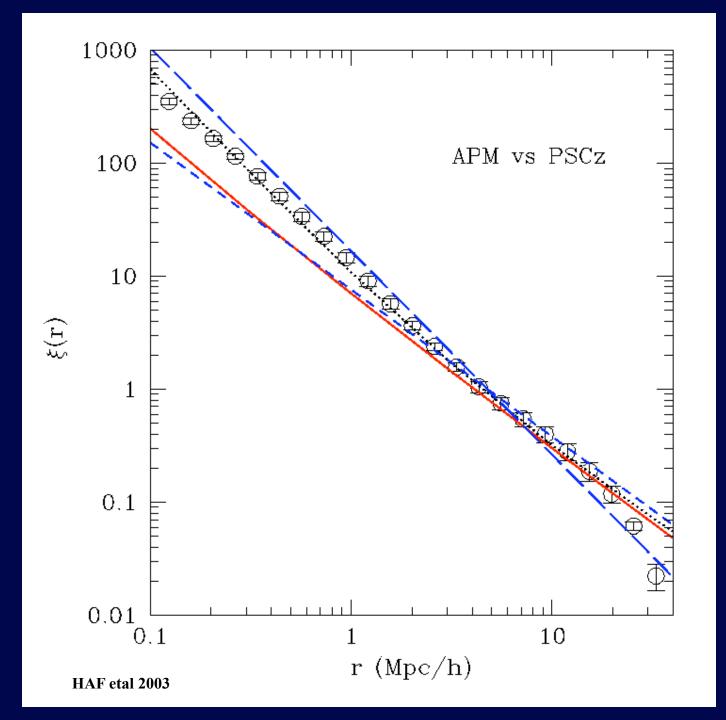
For models with Gaussian initial conditions the solution of the pair conservation equation is well approximated by:

$$v_{12}(r) = -\frac{2}{3}Hr\Omega^{0.6}\overline{\xi}(r)\left[1 + \alpha\overline{\xi}(r)\right],$$

$$\overline{\xi}(r) = \frac{3}{r^3}\int_0^r \xi(x)x^2dx \equiv \overline{\xi}(r)\left[1 + \xi(r)\right]$$

(Juszkiewicz, Springel & Durrer, 1998)

 α is a parameter that depends on the logarithmic slope of $\xi(r)$



We cannot estimate v₁₂ directly since we only observe the line-of-sight component of the peculiar velocity:

$$s_A = rac{ec{r}_A \cdot ec{v}_A}{r} \equiv \hat{r}_A \cdot ec{v}_A$$

Instead use the mean difference between the radial velocities of a pair of galaxies:

$$\langle s_1 - s_2 \rangle_p = v_{12} \hat{r} \cdot (\hat{r}_1 - \hat{r}_2) / 2$$
 where $\vec{r} = \vec{r}_1 - \vec{r}_2$

To estimate v_{12} we minimize the quantity

$$\chi^{2}(r) = \sum_{A,B} \left[\left(s_{A} - s_{B} \right) - p_{AB} \, \tilde{v}_{12}(r) / 2 \right]^{2}$$

$$p_{AB} = \hat{r} \cdot \left(\hat{r}_{A} + \hat{r}_{B} \right)$$

The sum is over all pairs with some fixed separation r.

Mark III: 2437 spirals and 544 ellipticals

1300 late type spirals SFI:

ENEAR: 1359 Ellipticals

RFGC: 1327 Spirals

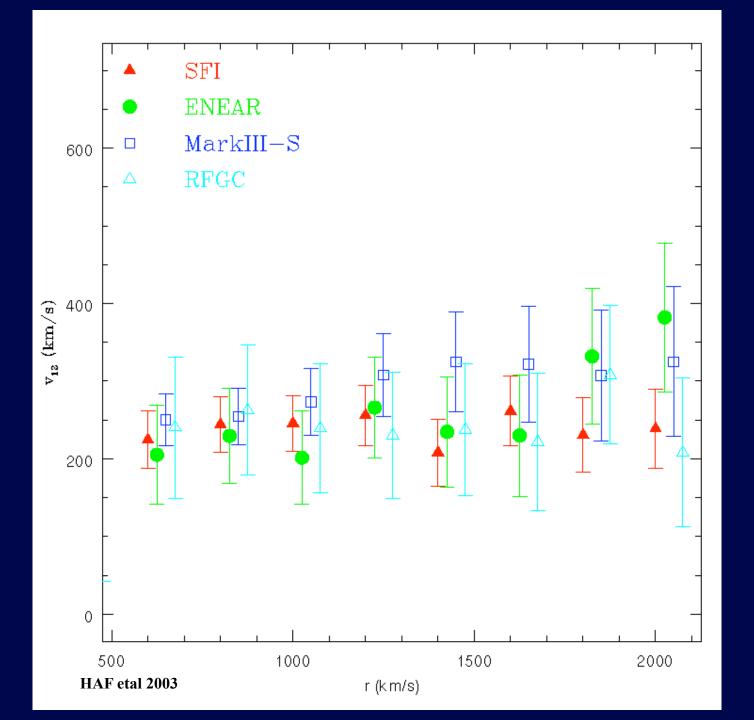
The estimates from the each of the catalogs are similar,

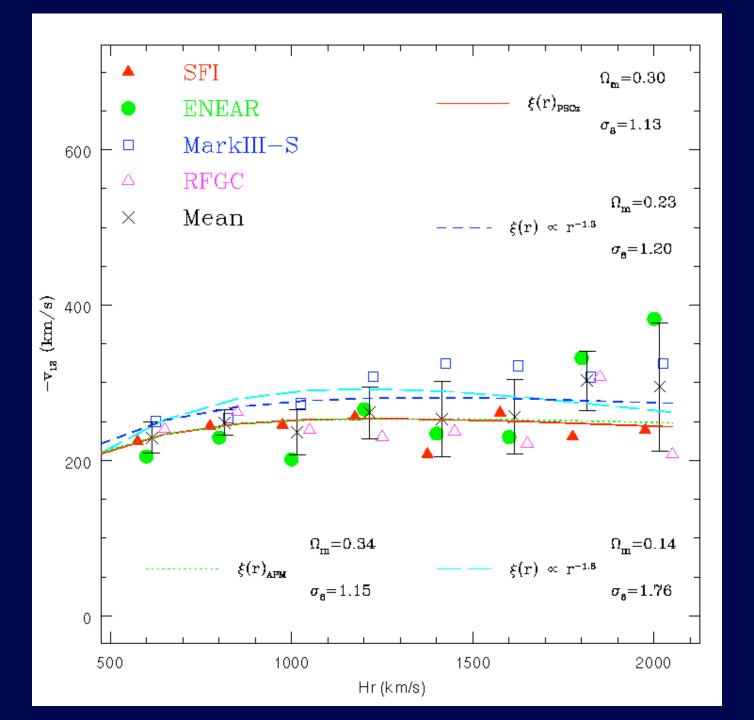
→ NO velocity bias

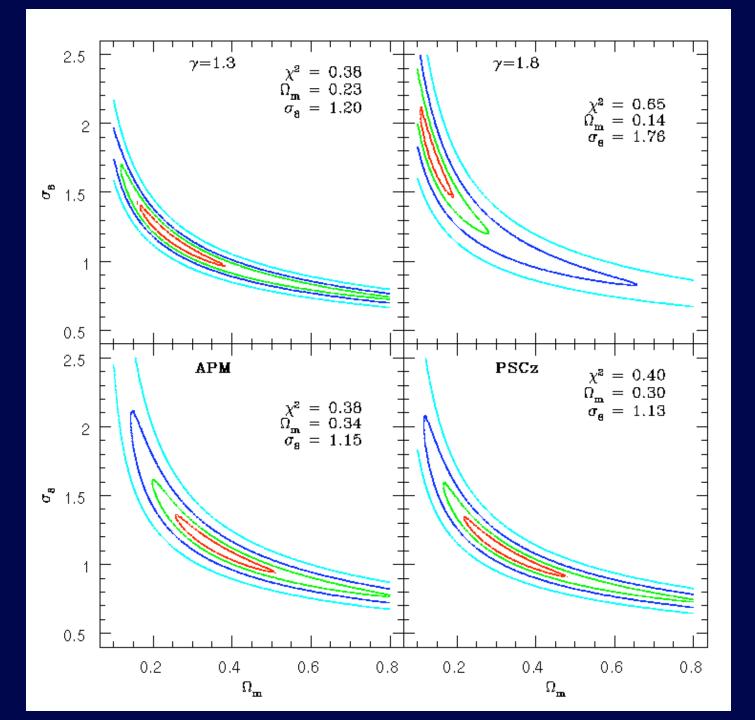
Standard linear bias model assumes: $\delta_{\mathbf{q}} = \mathbf{b} \delta$

The ratio of v_{12} from the elliptical and spiral samples is:

$$\frac{v_{12}^{(E)}}{v_{12}^{(S)}} = \frac{b_E}{b_S} = 1 \pm 0.15$$







The VELMOD (Willick et al 1997) analysis constrains

$$\beta = \Omega^{0.6} \sigma_8$$

$$\beta = \Omega^{0.6} \sigma_8$$
 to be $\beta = 0.5 \pm 0.05$

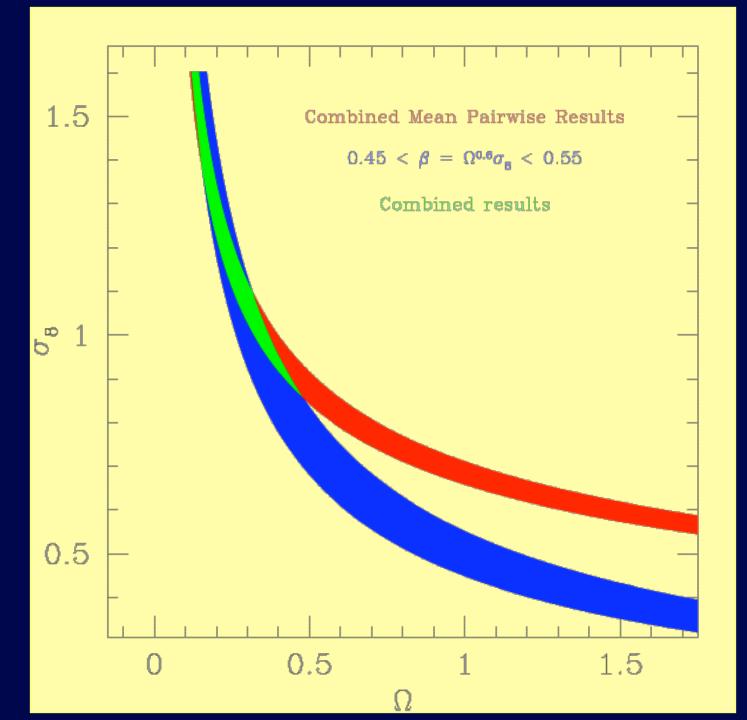
From velocity - density using the Mark III and IRAS 1.2 Jy.

Since the (Ω, σ_8) dependence of v_{12} and β are different we may use both to break the degeneracy between Ω and σ_8 .

Results: Low density Universe

$$\Omega$$
 < 0. 5

$$\sigma_8 > 0.9$$



Optimal Moments for the Analysis of Peculiar Velocity Surveys

Hume A. Feldman The University of Kansas With

Rick Watkins

ApJ 564 534-541 2002

ApJ 599, 820-828 2003.

Removal of non linear effects, aliasing and incomplete cancellations

Likelihood Methods for Peculiar Velocities

The analysis of observed line-of-sight velocities:

N objects with positions r_i and line-of-sight velocities v_i .

The observed velocity:
$$v_i = \vec{v}(\vec{r}_i) \cdot \hat{r}_i + \delta_i$$
 noise

Linear velocity field

The covariance matrix:

$$R_{ij} = \langle v_i v_j \rangle = R_{ij}^{(v)} + \delta_{ij} (\sigma_i^2 + \sigma_*^2)$$

$$R_{ij}^{(v)} = \frac{1}{(2\pi)^3} \int P_{(v)}(k) W_{ij}^2(k) d^3k$$
$$= \frac{H^2 f^2(\Omega_0)}{2\pi^2} \int P(k) W_{ij}^2(k) dk$$

The probability distribution for the line-of-sight peculiar velocities:

$$L(v_1, \dots, v_N; P(k)) = \sqrt{|R^{-1}|} \exp\left(\frac{-v_i R_{ij}^{-1} v_j}{2}\right)$$

Alternately, given a set of velocities $(v_1,...,v_n)$

 \Rightarrow L(v₁,...,v_N;P(k)) is the likelihood functional for the power spectrum.

Given a power spectrum parameterized by some vector

$$\Theta = (\theta_1, ..., \theta_s)$$

 \Rightarrow L(v₁,...,v_N; Θ) is the likelihood functional for the parameter Θ .

The value of the parameter vector that maximizes the likelihood is Θ_{MI}

Define the Fisher Transformation matrix:

$$F_{ij} = \left\langle \frac{\partial^{2}(-\ln L)}{\partial \theta_{i} \partial \theta_{j}} \right\rangle_{\Theta = \Theta_{0}}$$

The variances for an unbiased estimators are:

$$\Delta(\theta_{ML})_i \geq (F_{ii})^{-1/2}$$

Cramér-Rao inequality

In the limit of large N this becomes an equality Here we assume that this limit is satisfied.

Data Compression

Karhunen-Loève methods: Kendall & Stuart (1969) Tegmark, Taylor & Havens (1997) Watkins etal 2002 HAF etal 2003

Replace N original line-of-sight velocities $v_1,...,v_N$ with M moments $u_1,...,u_M$ where $M \le N$.

Here we concentrate on linear data compression where the moments are:

$$u_i = B_{ij} v_j$$

 B_{ij} is an $M \times N$ matrix.

If $M < N \Rightarrow$ we lose information.

We arrange it such that the lost information is primarily associated with small scales.

Suppose we compress all the velocity information into a single moment.

$$u = b_i v_i$$
.

Where b_i is a 1 \times N set of coefficients.

The Fisher matrix for the compressed data is:

$$\tilde{F}_{qq} = \frac{1}{2} \left| b_i \frac{\partial R_{ij}}{\partial \theta_q} b_j \right|^2$$

Where $b_i R_{ij} b_j = 1$

Since $\Delta\theta_q^2 = 1$ / F_{qq} we can find a moment that carries the minimum information about θ_q by minimizing the RHS.

Introduce a Lagrange multiplier and extremize with respect to bi

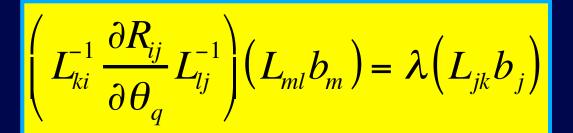
$$\left| b_i \frac{\partial R_{ij}}{\partial \theta_q} b_j \right| - \lambda b_i R_{ij} b_j$$

Since Rij is symmetric and positive definite we can Cholesky decompose it:

$$R_{ij} = L_{ik} L_{jk}$$

For some invertible Matrix Lij.

Eigenvalue problem:



Solving this gives us a set of N orthogonal eigenvectors $L_{ji}(b_n)_j$ with corresponding eigenvalues λ_n .

Eigenvector Lji(bn)j

 $u_n = (b_n)_i v_i$ Moment

The moments un are statistically independent, of unit variance:

- \Rightarrow Finding λ_n gives us the error bar of θ_q
- ⇒ If we convert the velocities into N moments there will be no loss of information and the transformation matrix will be invertible.

Since the moments are statistically independent, when we compress the data by removing selected moments, the information contained by those moments will be completely removed from the data.

Moment Selection

Order the moments in order of increasing eigenvalues:

$$\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_N$$

Each moment caries successively more information about θ_q with u_n caries the maximum possible amount of information.

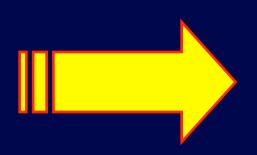
Goal:

Produce a data set that is less sensitive to the value of θ_q and keep as many moments as possible to retain the information about large scales.

Criterion:

- 1) Estimate $\theta_q = \theta_{qo}$
- 2) Keep the largest number M such that $\Delta\theta_q \geq \theta_{qo}$

If our estimate of θ_q is correct

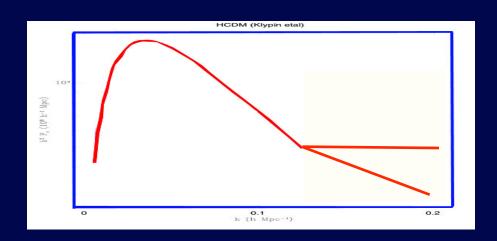


The set of moments $u_1,...,u_M$ will not contain enough information to distinguish $\theta_{\mathbf{q}}$ from zero.

Power Spectrum Model

Assume that:

$$P(k) = P_l(k) + \theta_q P_{nl}(k)$$

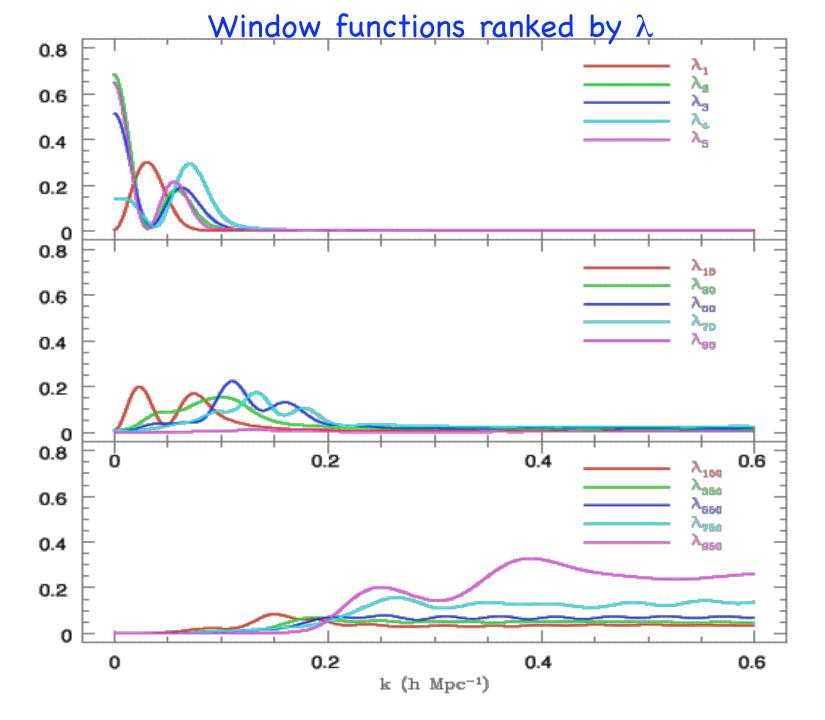


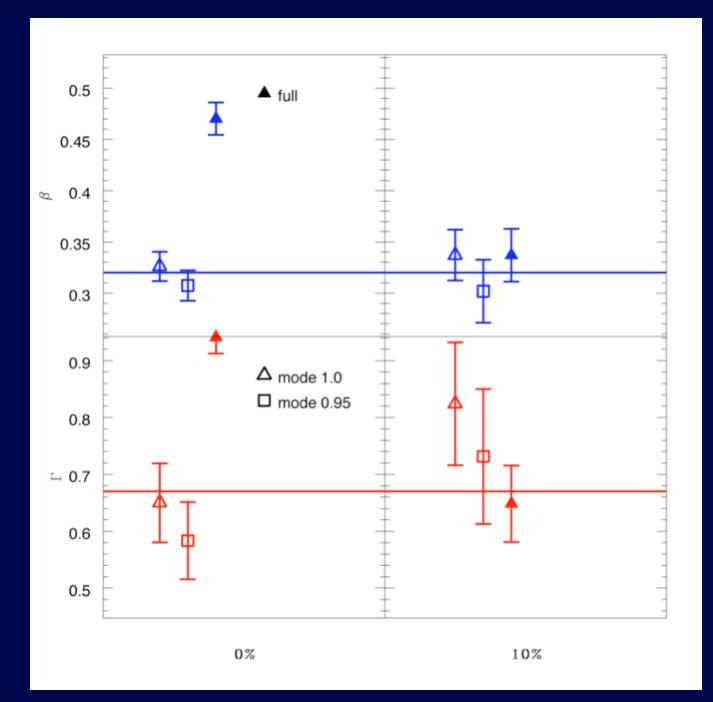
Where
$$P_l(k) = 0$$
 for $k > k_{nl}$
 $P_{nl}(k) = 0$ for $k < k_{nl}$

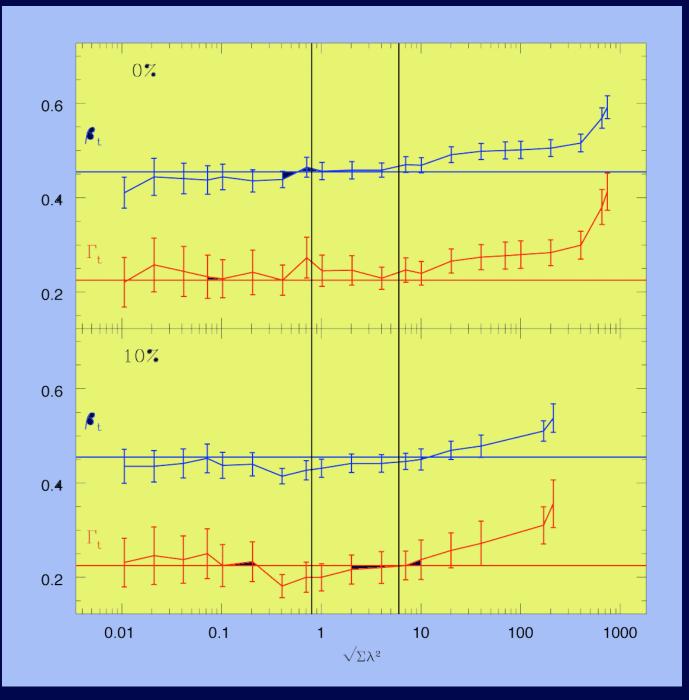
Use the BBKS power spectrum for $P_l(k)$. Try e.q. $P_{nl}(k) \propto k^{-1}$

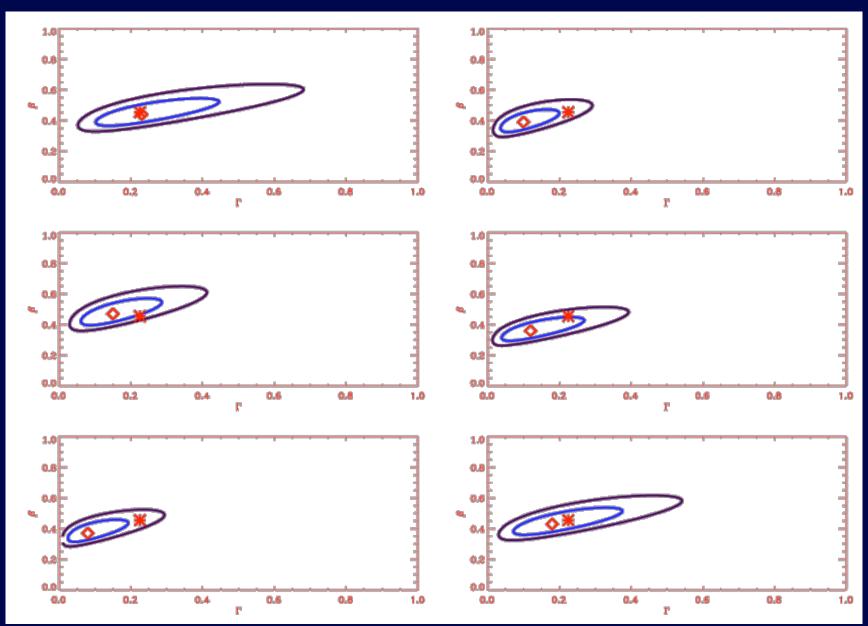
We choose $P_{nl}(k) = P_0$ for $k_{nl} < k < k_c$.

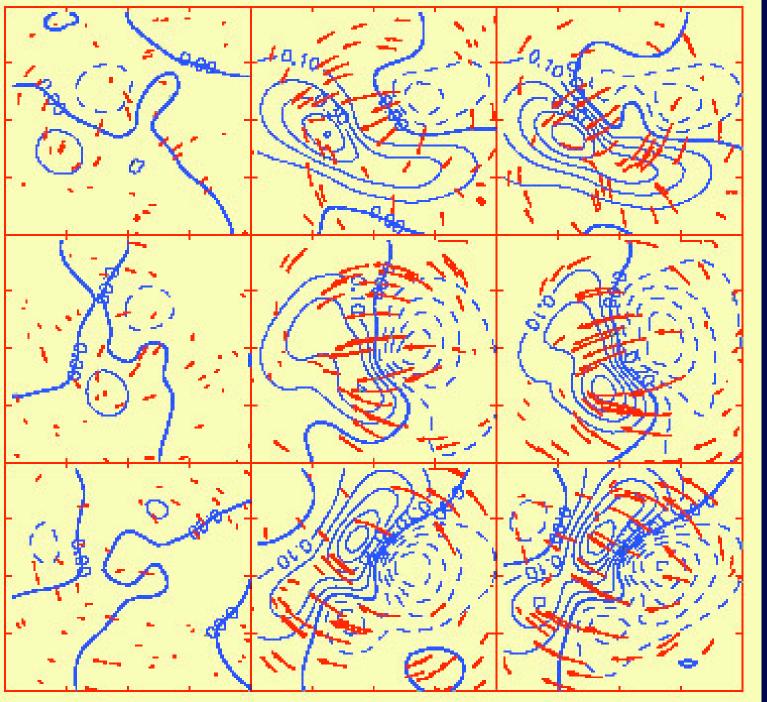
Where contribution of nonlinear scales to line-of-sight velocity dispersion (o*) should equal the estimate from the data.











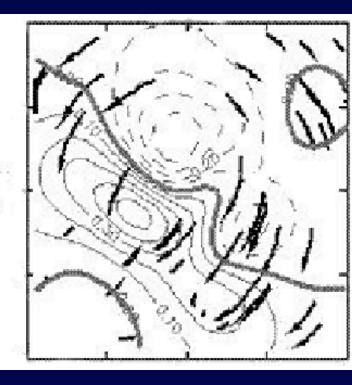
xy-plane

HAF, Hoffman & Nusser

xz-plane

yz-plane

High density Regions



Low density Regions

Cosmological Constant with velocity Fields

$$\left(\frac{H}{H_o}\right)^2 = \Omega_o(1+z)^3 - \left(\Omega_o + \Lambda_o - 1\right)(1+z)^2 + \Lambda_o$$

$$\Omega(\Omega_o, \Lambda_o, z) = \Omega_o \left(\frac{H}{H_o}\right)^{-2} (1+z)^3$$

$$f(\Omega_o, \Lambda_o, z) = X^{-1} \left(\Lambda_o (1+z)^{-2} - \frac{1}{2} \Omega_o (1+z) \right) - 1$$
$$+ (1+z)^{-1} X^{-3/2} \left(\int_0^{1+z} X^{-3/2} da \right)^{-1}$$

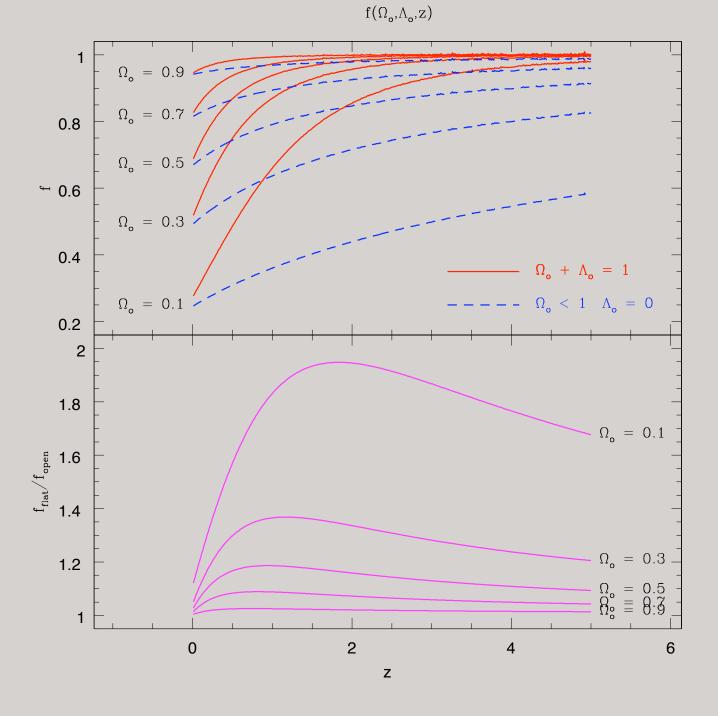
Where

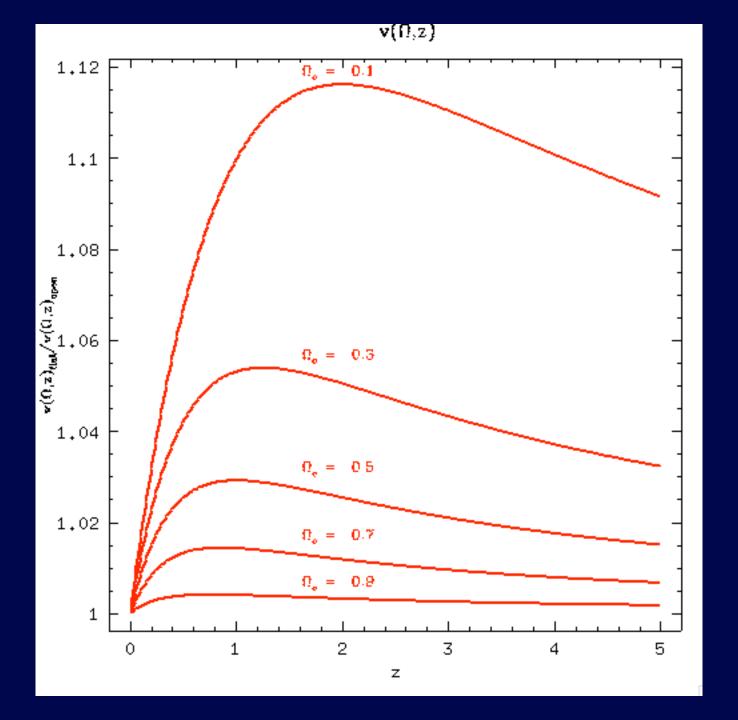
$$X = 1 + \Omega_o z + \Lambda * (1+z)^{-2} - 1$$

$$\frac{H_{flat}}{H_{open}} = \left(\frac{1 + \frac{(\Omega_o^{-1} - 1)}{1 + z}}{1 + \frac{(\Omega_o^{-1} - 1)}{(1 + z)^3}}\right)^{-0.5}$$

$$\frac{f_{flat}}{f_{open}} = \left(\frac{1 + \frac{(\Omega_o^{-1} - 1)}{1 + z}}{1 + \frac{(\Omega_o^{-1} - 1)}{(1 + z)^3}}\right)^{0.6}$$

$$\frac{v_{flat}}{v_{open}} = \left(\frac{1 + \frac{(\Omega_o^{-1} - 1)}{1 + z}}{1 + \frac{(\Omega_o^{-1} - 1)}{(1 + z)^3}}\right)^{0.1}$$





Concluding remarks

- Distance measurements are good.
- Determination of H_{o} , Ω , Λ , σ_{s} , b, ...
- Mapping of the Large-scale peculiar velocity field
- Study of the gravitational potential
- A 'true' tracer of the mass distribution
- We have some robust and consistent statistics
- We need:
- Deeper and denser surveys
- More accurate distance measurements

